Skip to main page content

Intra-annual relationships between δ13C ratios and xylogenesis for Black Spruce (Eastern North America)

Themes:
Symposium 3Dendrogeochemistry
What:
Poster
Part of:
When:
12:30, Wednesday 29 Jun 2022 (1 hour 30 minutes)
Where:
Coeur des Sciences, Sherbrooke Building, UQAM - Salle polyvalente (SH-4800)   Virtual session
This session is in the past.

Click below to enter the virtual room.

Enter virtual room

Are you a speaker or staff?

Access for speakers and staff
How:

The use of stable isotope proxies in combination with tree-ring parameters has become a well-established tool to unravel plants’ responses to a changing environment. However, while there have been many studies on intra-annual wood formation processes, the specific details of the fractionation of stable isotopes in high-resolution time scales -knowing the exact date of fractionation- remain unknown. Such a time scale mismatch, provides obstacles to investigate the timing, sensitivity and interactions among important ecophysiological processes (e.g., photosynthesis, stomatal conductance) that drive responses over shorter time scales. Consequently, process-based modeling remains poorly constrained, casting important uncertainties on the prediction of forest responses to meteorological variability. Here, we circumvent this difficulty by analysing weekly wood anatomical features jointly with carbon stable isotope fractionation (δ13C), measured on black spruce (Picea mariana) trees, in eastern Canada, during two consecutive growing seasons (2020 and 2021). The results illustrate a positive correlation between weekly fractionation of δ13C and cell production (number of cells per week), showing a rising trend from the beginning to the end of the growing season. There is also a positive correlation between cell wall thickness and fractionation of δ13C during the growing season. Both of these correlations indicate that fractionation of δ13C may be a good proxy for intra-annual, photosynthesis-driven variations in tree productivity during the growing season. These results may also help to improve modelling of the ecophysiological response of black spruce forests in the context of climate variability.

Speaker
Geotop
PhD student, Department of Biological Sciences, Université du Québec à Montréal

Documents

Session detail
Allows attendees to send short textual feedback to the organizer for a session. This is only sent to the organizer and not the speakers.
To respect data privacy rules, this option only displays profiles of attendees who have chosen to share their profile information publicly.

Changes here will affect all session detail pages