Stable and unstable person features: A structural account

Silvia Terenghi (s.terenghi@uu.nl)

Utrecht University

NELS 51 6-8 November 2020, UQAM

•00000

Person features show an **asymmetry** in their **diachronic development**:

- in personal pronouns and possessives forms, person features tend to be **stable**, *i.e.* pronominal and possessive paradigms show diachronically comparable partitions;
- in demonstrative forms, person features can undergo a **reorganisation** which leads to diachronically different partitions.

Personal pronouns (1) & possessives (2): no featural reorganisation \rightarrow in Romance: stably ternary = they contrastively encode three persons.

(1) a. Personal pronouns

Introduction

000000

Before	1	2	3
\overline{After}	1	2	3

(2) a. Possessives

Be fore	1.Poss	2.Poss	3.Poss
\overline{After}	1.Poss	2.poss	3.Poss

b. Latin > Galician (Dubert & Galves 2016, 420)

Latin	ego	tu	(ille)
Galician	eu	ti	el

b. Latin > Italian

Latin	meus	tuus	suus	
Italian	mio	tuo	suo	

Demonstrative systems: featural reorganisation \rightarrow in Romance: original ternary systems frequently evolve into participant-based (3) or into speaker-based binary systems (4):

a. Demonstratives (participant-based) (3)near 1

Before

After

Introduction 000000

- far from 1/2
- (4)a. Demonstratives (speaker-based) near 1

Before

After

- far from 1/2
- near 1/2b. Catalan (Ledgeway & Smith 2016, 886, 892)
- - Cat/1 aquell aguest aqueix aquell Cat/2 aguest

near 2

- near 1
- b. Rioplatense Spanish (A. Saab, p.c.)
 - RS/1aquel este ese RS/2este ese

near 2

far from 1/2

far from 1

Proposal

Introduction

000000

The diachronic asymmetry can be derived **structurally**, via the architecture of person features in indexical forms.

Main ingredients:

- Harbour (2016)'s person system;
- derivations for the different person indexicals;
- Polinsky (2018)'s intuition that stability is linked to structural salience.

 \rightarrow Person features are only structurally salient in personal pronouns and in the indexical part of possessives (<u>stable</u>), but not in the indexical part of demonstratives (<u>unstable</u>).

gender features, lexical variation).

Introduction

000000

• Semantics of person, not its morphological exponents: person paradigms do show morphological change (e.g. loss of number and

- Main focus: forms in which **person features are interpretable** and valued, i.e. excluding all agreement forms.
- Empirical domain:
 - diachrony = Romance data (Jungbluth & Da Milano 2015 and Ledgeway & Maiden 2016; cf. there for full overviews);
 - **contact** = APiCS (Atlas of Pidgin and Creole Language Structures, Michaelis et al. 2013).

Roadmap

Introduction

00000

Person indexicals
 Personal pronouns
 Possessives
 Demonstratives

• (In)stability: A structural account

Roadmap

• Person indexicals Personal pronouns

> Possessives Demonstratives

• (In)stability: A structural account

Personal pronouns: Diachrony and contact I

Personal pronouns in Romance languages retained the ternary partition of deictic space from Latin \rightarrow no featural reorganisation:

Personal pronouns in diachrony (32/32)

Before	1	2	3
After	1	2	3

Personal pronouns: Diachrony and contact I

Personal pronouns

After

Personal pronouns in Romance languages retained the ternary partition of deictic space from Latin \rightarrow no featural reorganisation:

(5) Personal pronouns in diachrony (32/32)

Be fore	1	2	3
After	1	2	3

Personal pronouns in pidgins/creoles mostly retain their major lexifiers' partitions [APiCS 15, revised] \rightarrow no reorganisation, but for:

- 6/74 varieties: different values for clusivity (5 lost, 1 acquired).
- (3/74: compositional clusivity; 8/74: person syncretism [APiCS 16]).
- (6) a. Personal pronouns in the APiCS I (62/74) b. Personal pronouns in the APiCS II (3/74)

(6)	a.	Personal	pronouns	in the	APiCS 1 ((62/74) b.	Personal	pronouns	in the .	APiCS II	(3/74)
		Before	1	2	3	ı	Before	1EXCL	1INCL	2	3

After

1excl

Silvia Terenghi (Utrecht) Stable & unstable person features N

1INCL

Personal pronouns: Diachrony and contact II

Wider typological investigation: Nichols 1992:

- the inclusive/exclusive opposition is very **stable genetically** (and slightly less so areally);
- only attested examples of **instability** = linked to **contact** (cf. also Siewierska 2004, 7.3 & references therein):
 - tripartition > quadripartition: Central Khoisan < Southern Khoisan; Numic & Washo < Penutian; Kwaza < Tupi-Guarani; Gujarati, Marathi & Sindhi < Dravidian Ls; Aneêm < Austronesian Ls; Gimira, Amaaro & Dasenech (Ethiopian Omotic-Cushitic) < Nilo-Saharian Ls;
 - quadripartition > tripartition: Warlpiri (younger speakers).

Personal pronouns: Generalisations

The indexical value of personal pronouns:

- is stable in diachrony and
- tends to be remarkably stable in contact situations (limited examples of switches between tri- and quadripartitions, but no reduction is attested).

Person features: The system

Cf. Harbour 2016, with minor revisions.

- Ontology (i.e. discourse-related atoms): speaker = i, hearer = u, other = o.
- Accessed by the grammar *via* two binary features, $[\pm A]$ and $[\pm P]$, that can (successively) apply to the categorial head π :
 - categorial head: $\llbracket \pi \rrbracket = \{i_o, iu_o, u_o, o_o\}$
 - two features:
 - a. $[Author] = \{i\}$ $\rightarrow [A]$ b. $[Participant] = \{i, iu, u\}$ $\rightarrow [P]$
 - each feature must have either of two values:
 - a. + (action: disjoint addition)
 - b. (action: joint subtraction)

Personal pronouns: Derivation

The two features can (successively) compose with π , to partition it:

```
(Unary)
                                             \pi
                   (+Participant(\pi))
                                                                 (-Participant(\pi))
                                                                                           (Binary/P)
               (+Author(\pi))
                                                             -Author(\pi)
                                                                                           (Binary/A)
    (+Part(+Auth(\pi)))
                                   (+Part(-\overline{Auth(\pi)}))
                                                                (-Part(\pm Auth(\pi)))
                                                                                           (Ternary)
(+A(-P(\pi))) (+A(+P(\pi)))
                                   (-Auth(+Part(\pi)))
                                                                 (-Auth(-Part(\pi)))
                                                                                           (Quatern.)
```

Personal pronouns: Derivation

The two features can (successively) compose with π , to partition it:

```
(Unary)
                                            \pi
                   (+Participant(\pi))
                                                                (-Participant(\pi))
                                                                                         (Binary/P)
              (+Author(\pi))
                                                            -Author(\pi)
                                                                                         (Binary/A)
    (+Part(+Auth(\pi)))
                            (+Part(-\overline{Auth(\pi)}))
                                                               (-Part(\pm Auth(\pi)))
                                                                                         (Ternary)
(+A(-P(\pi))) (+A(+P(\pi)))
                                   (-Auth(+Part(\pi)))
                                                               (-Auth(-Part(\pi)))
                                                                                         (Quatern.)
```

Pronouns: Generalisations:

- ✓ no reductions to bi-/monopartitions \rightarrow personal pronouns derived directly by the successive composition of **both person features** with π ;
- ✓ tri- > quadripartitions, or quadri- > tripartitions \rightarrow changes in the composition ordering.

```
 \begin{array}{cccc} (+Part(+Auth(\pi))) & (+Part(-Auth(\pi))) & (-Part(\pm Auth(\pi))) \\ (+A(-P(\pi))) & (+A(+P(\pi))) & (-Auth(+Part(\pi))) & (-Auth(-Part(\pi))) \end{array}  (Ternary)
```

Possessives

Person indexicals

Possessives

• (In)stability: A structural account

Possessives: Diachrony and contact

Possessive forms in Romance languages retained the ternary partition of deictic space from Latin \rightarrow no featural reorganisation:

(7) Possessive forms in diachrony (23/23)

• Analytic possessives = P+pronoun (PPs): available, but restricted.

Possessive forms in Romance languages retained the ternary partition of deictic space from Latin \rightarrow no featural reorganisation:

(7) Possessive forms in diachrony (23/23)

• Analytic possessives = P+pronoun (PPs): available, but restricted.

Possessive forms in pidgins/creoles tend to retain the major lexifiers' deictic structure (cf. personal pronouns) [APiCS 37, revisited]:

	Possessive adjectives (APiCS: 76 varieties)	Only	Option	Tot.
1.	Unmarked personal pron. [type: mi 'my', Beliz. C.]	8	38	46
2.	P+pronoun (analytic) [type: fu mi 'my', Beliz. C.]	12	34	46
3.	Genitive pron. (synthetic) [type: ma 'my', Beliz. C.]	9	32	41

Possessives

Possessives: Generalisations

- The indexical value of possessive forms does not typically undergo diachronic or contact-induced change (cf. personal pronouns)
 - \rightarrow derive it like personal pronouns = via composition of [$\pm A$] and [$\pm P$] with π .
- Morphological variation (≠ personal pronouns): pronominal possessors can be expressed as:
 - PPs (P+personal pronoun), type: fu mi;
 - synthetic (genitive) forms, type: ma;
 - unmarked personal pronoun, type: mi.

Possessives: Derivation

The indexical base of possessives is an inherently Case-marked personal pronoun (reversing Caha (2009)'s rationale).

- Indexical base derived as personal pronouns \rightarrow diachronic symmetry.
- Inherent Case: underlyingly construed as a PP (Řezáč 2008).
- \rightarrow Indexical base of possessives = PP (P+pronoun):
 - spelled out as such: P+pronoun (analytic), type: fu mi;
 - spelled out synthetically: genitive possessive forms (synthetic;
 & possibly DP-internal agreement slot), type: ma;
 - spelled out synthetically + syncretism: unmarked personal pronouns, type: \it{mi}

```
\begin{bmatrix} [_{\operatorname{PP}} \mathbf{P} \; (+Part(+Auth(\pi)))] & [_{\operatorname{PP}} \mathbf{P} \; (+Part(-Auth(\pi)))] & [_{\operatorname{PP}} \mathbf{P} \; (-Part(\pm Auth(\pi)))] \\ [_{\operatorname{PP}} \mathbf{P} \; (+A(-P(\pi)))] & [_{\operatorname{PP}} \mathbf{P} \; (+A(+P(\pi)))] & [_{\operatorname{PP}} \mathbf{P} \; (-Auth(+Part(\pi)))] & [_{\operatorname{PP}} \mathbf{P} \; (-Auth(-Part(\pi)))] \end{bmatrix}
```

Roadmap

• Person indexicals

Personal pronounce

Possessives

Demonstratives

• (In)stability: A structural account

Demonstratives

Exophoric demonstratives \rightarrow locate objects/areas in the external world w.r.t. **deictic centre**.

According to the deictic centre(s) involved:

speaker	hea rer	other	\rightarrow Binary system, speaker-oriented
speaker hearer other -		\rightarrow Binary system, participant-oriented	
speaker	hearer	other	\rightarrow Ternary system

Assumptions:

- discourse participants as deictic centres: demonstratives systems are primarily defined by person features;
- demonstratives express a **spatial relation** to person, rather than person.

Demonstratives: Diachrony

Some Romance ternary demonstrative systems evolved into participant-based (8) or speaker-based binary systems (9):

> Participant-based binary dems (53/239) [45/153 nom.; 8/86 adv.] e.g. Tarantino (demonstrative adj., Ledgeway & Smith 2016, 886)

$\mathrm{Tar}/1$	sto [near 1]	SSO [near 2]	quid [far from 1/2]	
$\mathrm{Tar}/2$	sto [near 1/2]	quid [far from 1/2]	

(9)**Speaker-based** binary dems (72/239) [37/153 nom.; 35/86 adv.] e.g. Occitan (demonstrative adv., Ledgeway & Smith 2016, 895)

$\mathrm{Occ}/1$	aicí [near 1]	aquí [ne	ear 2]	alai [far from 1/2]
Occ/2	aicí [near	1]	aquí [far from 1]	

Instability of the **hearer-related domain**:

binary/P same exponent as the speaker-related one;

binary/A no longer consistently referred to by only one form.

20 / 35

Demonstratives: Contact

The demonstrative systems of pidgins'/creoles' major lexifiers show different patterns of evolution [APiCS 33, revisited]:

Nominal demonstratives, 73 contact varieties

Major lexifier type	Same contrasts	More contrasts	Fewer contrasts		
(one per contact variety)	(n=46)	(n=3)	(n=24)		
3-way contrast $(n=26)$	5 [19.23%]	_	$21 \ [80.77\%]$		
2-way contrast $(n=38)$	32 [84.21%]	3 [7.89%]	3 [7.89%]		
No contrast $(n=9)$	9 [100%]	_	_		

Adverbial demonstratives, 61 contact varieties

Major lexifier type	Same contrasts	More contrasts	Fewer contrasts
(one per contact variety)	(n=39)	(n=2)	(n=20)
3-way contrast $(n=24)$	4 [16.67%]	_	20 [83.33%]
2-way contrast $(n=37)$	34 [91.89%]	2 [5.41%]	1 [2.70%]

 \rightarrow Ternary > speaker-based binary systems.

- ✓ Contrary to personal pronouns and possessives, demonstrative forms can show a **reduction of person features**:
 - reduction of ternary systems to (mostly) binary ones, *vs* stability of binary and unary systems;
 - instability of the hearer-related domain.

Demonstratives

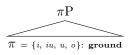
Indexical part of demonstratives: **two-step** functional application of person features to π :

- 1. a space function, χ , applies to π : define the discourse space;
- 2. $[\pm A]/[\pm P]$ can apply to the result of $(\chi(\pi))$: yield a subregion.
- \rightarrow Cf. Svenonius 2006 seqq. for spatial Ps with AxPartP and Zwarts 1997 seqq. for vectors.

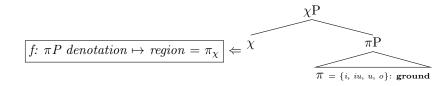
Introduction

Demonstratives

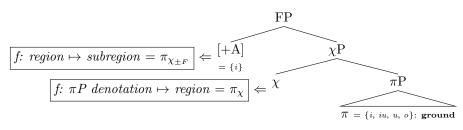
'This/here' = (x)/PLACE near i in the space of π .



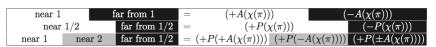
'This/here' = (x)/PLACE near i in the space of π .



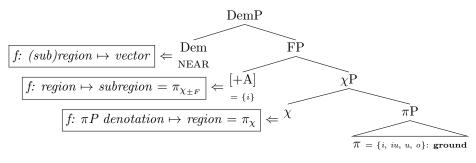
'This/here' = (x)/PLACE near i in the space of π .



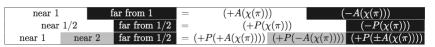
Full featural schema:



'This/here' = (x)/PLACE near i in the space of π .



Full featural schema:



Person indexicals
 Personal pronouns
 Possessives
 Demonstratives

• (In)stability: A structural account

Proposal

Introduction

Recap:

- Personal pronouns = $(\pm F(\pi))$ (cf. Harbour 2016);
- indexical base of possessive forms = [PP $\mathbf{P}(\pm F(\pi))$];
- indexical base of demonstrative forms = $(\pm F(\chi(\pi)))$.
- → Evidence: **agreement** facts (no agreement with person (number, gender) features in the indexical base of possessives & demonstratives).

Diachronic asymmetry: person features = stable in personal pronouns & possessives vs unstable in demonstrative forms.

• Proposal: (in)stability \leftrightarrow structural salience.

The most salient (\rightarrow stable) feature is the **first to compose** with the root of its functional sequence.

Stability and structural salience

Link inspired by Polinsky (2018, 63-65): heritage speakers:

- ✓ retain elements at the **top** of the relevant domains ('salient')
- × lose elements that occupy **lower** projections ('non-salient') in the same domains.
- Elements at the top are typically **indexical** (idea: indexicality contributes to the salience of linguistic elements).
- Structural formalisation: "sensitivity to the topmost projection of a domain" (Polinsky 2018, 63).

Stability and structural salience

Link inspired by Polinsky (2018, 63-65): heritage speakers:

- ✓ retain elements at the **top** of the relevant domains ('salient')
- × lose elements that occupy **lower** projections ('non-salient') in the same domains.
- Elements at the top are typically **indexical** (idea: indexicality contributes to the salience of linguistic elements).
- Structural formalisation: "sensitivity to the topmost projection of a domain" (Polinsky 2018, 63).
- \rightarrow Claim revisited here: a feature is salient if it is the first to apply to the root of its functional sequence.

Personal pronouns and possessives

Personal pronouns and the indexical base of possessive forms are **straightforwardly** derived by the composition of the person features with π .

		$(-Part(\pm Auth(\pi)))$
$(+A(-P(\pi))) \qquad (+A(+P(\pi)))$	$(-Auth(+Part(\pi)))$	$(-Auth(-Part(\pi)))$
$[PP] \mathbf{P} (+Part(+Auth(\pi)))]$	$\mathbf{P}\left(+Part(-Auth(\pi))\right)$	$[_{\scriptscriptstyle{\mathrm{PP}}} \mathbf{P} (-Part(\pm Auth(\pi)))]$
$\left[\left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(+P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} \ \left(+A(-P(\pi)) \right) \right] \left[P_{\mathrm{PP}} \ \mathbf{P} $	$P(-Auth(+Part(\pi)))]$	$[_{\scriptscriptstyle{\mathrm{PP}}} \ \mathbf{P} \ (-Auth(-Part(\pi)))]$

$$(10) \quad (\pm F \ (\pi))$$

Introduction

 \rightarrow Salient: π 's featural content is stable/less prone to change.

The indexical base of demonstrative forms is derived by a **two-step** functional application:

– person features (can) apply to π only after χ has applied to it (region \mapsto sub-region).

$$\begin{array}{c|c} (+A(\chi(\pi))) & (-A(\chi(\pi))) \\ (+P(\chi(\pi))) & (-P(\chi(\pi))) \\ (+P(+A(\chi(\pi)))) & (+P(-A(\chi(\pi)))) & (+P(\pm A(\chi(\pi)))) \end{array}$$

(11)
$$(\pm F(\boldsymbol{\chi}(\pi)))$$

 \rightarrow Person features in demonstrative forms are not the first to compose with π , i.e. **not** structurally **salient** \rightarrow π 's person featural content is **unstable**/more prone to change.

Implementation

Introduction

Due to the increase in complexity (recursion of compositions), one (or more) **non-salient feature(s) can be delinked** from their functional sequence.

- In ternary demonstrative systems, one (or more) person features can be delinked from the $(\chi(\pi))$ sequence.
- However, those features are still available in the person pronominal and possessive systems of the same language, where they directly compose with π .
 - Principled explanation for the asymmetry.
 - Delinked features are still available: they can be re-linked.

 \checkmark Structural considerations define where change can happen \rightarrow demonstratives, rather than personal pronouns and possessives.

But how? Formal markedness can partially predict the reorganisation patterns.

- Recall the generalisations on change:
 - ternary systems are the most unstable ones ↔ how many active features?
 - the hearer-related domain is the most unstable one ↔ uniform or non-uniform feature values?

Conclusions

- Diachronic asymmetry: person features in personal pronouns and possessives *vs* demonstratives:
 - diachronic and contact data;
 - derivation of person indexicals:
 - i. personal pronouns = $(\pm F(\pi))$ (cf. Harbour 2016);
 - ii. indexical base of possessive forms = [$_{PP}$ **P** ($\pm F(\pi)$)];
 - iii. indexical base of demonstrative forms = $(\pm F(\chi(\pi)))$.

Conclusions

Conclusions

- Diachronic asymmetry: person features in personal pronouns and possessives vs demonstratives:
 - diachronic and contact data;
 - derivation of person indexicals:
 - i. personal pronouns = $(\pm F(\pi))$ (cf. Harbour 2016);
 - ii. indexical base of possessive forms = $[PP \ \mathbf{P} \ (\pm F(\pi))]$;
 - iii. indexical base of demonstrative forms = $(\pm F(\chi(\pi)))$.
- Structure and salience (first merge) & salience and stability (cf. Polinsky 2018) \rightarrow person features in personal pronouns and possessives are structurally salient = stable; vs in demonstratives are not structurally salient = unstable (possibly delinked from the $(\chi(\pi))$ functional sequence).

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement: CoG 681959_MicroContact).

- Caha, P. (2009). The nanosyntax of case. PhD thesis, University of Tromsø.
- Harbour, D. (2016). Impossible persons. Cambridge, MA: The MIT Press.
- Jungbluth, K. & Da Milano, F., Eds. (2015). Manual of deixis in Romance languages. Berlin: De Gruyter.
- Ledgeway, A. & Maiden, M., Eds. (2016). The Oxford guide to the Romance languages. Oxford: Oxford University Press.
- Michaelis, S. M., Maurer, P., Haspelmath, M., & Huber, M., Eds. (2013).
 APiCS Online. Leipzig: Max Planck Institute for Evolutionary Anthropology.
- Nichols, J. (1992). Linguistic diversity in space and time. Chicago: The University of Chicago Press.
- Polinsky, M. (2018). Heritage languages and their speakers. Cambridge: Cambridge University Press.
- Siewierska, A. (2004). Person. Cambridge: Cambridge University Press.

References II

- Svenonius, P. (2006). The emergence of axial parts. Tromsø Working Papers in Linguistics, 33, 50–71.
- Řezáč, M. (2008). Phi-Agree and theta-related case. In D. Harbour, D. Adger, & S. Béjar (Eds.), Phi Theory: Phi-Features across Interfaces and Modules (pp. 83–130). Oxford: Oxford University Press.
- Zwarts, J. (1997). Vectors as relative positions: A compositional semantics of modified PPs. *Journal of Semantics*, 14, 57–86.