Passer au contenu de la page principale

LLMs as Aid in Medical Diagnosis

Mon statut pour la session

Quoi:
Talk
Partie de:
Quand:
11:00 AM, Lundi 10 Juin 2024 EDT (1 heure 30 minutes)
Thème:
Large Language Models & Multimodal Grounding
Despite considerable effort, we see diminishing returns in detecting people with autism using genome-wide assays or brain scans. In contrast, the clinical intuition of healthcare professionals, from longstanding first-hand experience, remains the best way to diagnose autism. In an alternative approach, we used deep learning to dissect and interpret the mind of the clinician. After pre-training on hundreds of millions of general sentences, we applied large language models (LLMs) to >4000 free-form health records from medical professionals to distinguish confirmed from suspected cases autism. With a mechanistic explanatory strategy, our extended LLM architecture could pin down the most salient single sentences in what drives clinical thinking towards correct diagnoses. It identified stereotyped repetitive behaviors, special interests, and perception-based behavior as the most autism-critical DSM-5 criteria. This challenges today’s focus on deficits in social interplay and suggests that long-trusted diagnostic criteria in gold standard instruments need to be revised.

 

References

Bzdok, Danilo, et al. Data science opportunities of large language models for neuroscience and biomedicineNeuron (2024).

Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: a topographical perspectiveNature Reviews Neuroscience22(8), 503-513.

Danilo Bzdok

Conférencier.ère

Mon statut pour la session

Detail de session
Pour chaque session, permet aux participants d'écrire un court texte de feedback qui sera envoyé à l'organisateur. Ce texte n'est pas envoyé aux présentateurs.
Afin de respecter les règles de gestion des données privées, cette option affiche uniquement les profils des personnes qui ont accepté de partager leur profil publiquement.

Les changements ici affecteront toutes les pages de détails des sessions